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ABSTRACT: Development of functional inorganic and transition metal compounds is usually based on ad hoc qualified guesses,
with computational methods playing a lesser role than in drug discovery. A de novo evolutionary algorithm (EA) is presented that
automatically generates transition metal complexes using a search space constrained around chemically meaningful
structures assembled from three kinds of fragments: a part shared by all structures and typically containing the metal center
itself, one or several parts consisting of ligand skeletons, and unconstrained parts that may grow and vary freely. In EA
optimizations, using a cost-efficient fitness function based on a linear quantitative structure−activity relationship model for
catalytic activity, we demonstrate the capabilities of the method by retracing the transition from the first-generation,
phosphine-based Grubbs olefin metathesis catalysts to second-generation catalysts containing N-heterocyclic carbene
ligands instead of phosphines. Moreover, DFT calculations on selected high-fitness, last-generation structures from these
evolutionary experiments suggest that, in terms of catalytic activity, the structures arrived at by virtual evolution alone
compare favorably with existing, highly active catalysts. The structures from the evolution experiments are, however,
complex and probably difficult to synthesize, but a set of manually simplified variations thereof might form the leads for a
new generation of Grubbs catalysts.

■ INTRODUCTION
Whereas a plethora of methods for virtual screening1−5 and de
novo design5−7 are used routinely in the development of phar-
maceutical compounds, such methods are only beginning to
penetrate through to organometallic and transition metal che-
mistry, where discoveries of new and interesting compounds to
a large extent continue to draw upon chemical knowledge,
intuition, and serendipity.8

Existing de novo design methods are based on automatic
computer generation of candidate molecular structures in order
to optimize their biological activity. The latter, normally incor-
porated (approximately) in a “scoring” or “fitness” function, is
either related to how well the structure of the candidate fits
(e.g., in terms of the interaction energy) to a 3D model of the
active site of a protein (termed receptor- or structure-based de-
sign) or to the degree to which candidates are similar to a known
active compound (termed ligand-based design).7 The two main
classes of de novo drug design are illustrated in Figure 1 by actual

examples from design of ligands (i.e., inhibitors) for the serine
protease thrombin.9−11 Drawing on protein engineering techni-
ques, de novo design has in recent years also been demonstrated
for construction of artificial enzymes that catalyze reactions not
necessarily found in nature.12−15

Even if the in silico methods for drug design seldomly get the
main credit for the development of a given drug and are almost
always used in combination with other advanced methods such
as parallel synthesis, they play an important role by discri-
minating roughly between active and inactive compounds.
These methods are often less good at further optimizing a
marginally active compound, a problem that to a large extent
can be attributed to the crudeness of the fitness functions used,
that is, to inadequate description of the candidate−protein
interaction in case of structure-based design.5
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In the current contribution, we explore whether an effi-
cient and general de novo design method for transition metal
compounds, with the fitness function expressing a property
(such as catalytic activity) of the compound itself, may be
achieved.
In general, de novo methods involve three main tasks: (i)

construction of molecular structures; (ii) evaluation of the
quality of each structure (i.e., computation of the fitness);
and (iii) sampling of and optimization in structure space.
The basic building blocks for the assembly of new structures
can be based on either single atoms or fragments. Since
atom-based assembly methods tend to generate intractable
structural diversities, fragment-based methods are preferred
in most cases.
The molecular structure space is vast, and selecting a suitable

global optimization method is essential. Evolutionary methods
such as genetic algorithms (GA),16 genetic programming (GP),17

evolutionary strategy (ES),18 and evolutionary programming
(EP)19 are among the methods best suited to locate the global
optimum when tailored genetic operators for structure
generation are used to search the structure space; see refs 7
and 20 for key reviews. Therefore the most powerful methods

for de novo molecular design are based on some form of an
evolutionary algorithm (EA) optimizer.21−26 The evolutionary
process can be seen as a “swarm” of individuals (here molecular
structures) traveling through a “fitness landscape” in search for
the global optimum. Figure 2 shows a 2D version of such a
landscape where the optimization (here assumed to be a
maximization) is performed on two variables (represented here
as “Gene 1” and “Gene 2”) where a fitness (the height of the 2D
surface) is associated with each coordinate position. The spread
of the population (“swarm”) of molecules together with the
application of the evolutionary operators, in particular the
mutation operator, ensure that the “swarm” is less likely to be
trapped in a local maximum.
Whereas high-throughput approaches and genetic algorithms

have indeed been adopted in optimization of catalysts (e.g., see
refs 27−33), the coupling of such methods with automated
molecular builders to allow for incremental in silico construction
and optimization of general transition metal compounds against
a computed scoring (fitness) function (a hallmark of de novo
design methods) has, to our knowledge, not been achieved. A
de novo approach to predict the ground state coordination
isomers of a subclass (trigonal bipyramidal) of transition metal

Figure 1. (a) Example of receptor-based design involving the binding pocket of thrombin as determined by the protein structure (PDB entry
1DWD) of its complex with a known inhibitor, NAPAP. The pocket contains three main interaction sites (here schematically indicated as S1, S2, and
S3). Drawing upon a library of organic fragments (indicated to the left), candidate ligands (inhibitors) have been assembled and subjected to fitness
pressure calculations in the form of empirically estimated binding affinities. A designed ligand (rendered in red) with a binding affinity predicted to
be close to that of NAPAP is shown to the right.9 (b) Example of ligand-based design. Drawing upon a library of organic fragments (indicated to the
left), candidate ligands (inhibitors) are assembled and subjected to fitness pressure calculations in the form of a degree of similarity (see ref 10 for a
review of similarity measures) with a template molecule. Structural similarity is here indicated by the closeness of the designed ligand (rendered in
red) to the template (NAPAP, rendered in blue) in a 2D-projection of the structural space spanned by some latent variables (which are linear
combinations of the original variables) LV1 and LV2 (which could be principal components, for example). In the present example,11 the Tanimoto
index was used as similarity-based fitness and de novo optimization produced the ligand shown, which subsequently essentially replicated the binding
mode of NAPAP with thrombin in docking experiments.
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complexes using a hierarchy of molecular-level computational
methods has been reported.34 Similarly, automated molecular
builders handling subclasses of metal chelate complexes also
exist.35,36 It is also encouraging that much progress has been
made in the use of molecular-level computational methods for
prediction of homogeneous catalysts in recent years, with a
clear tendency toward the adoption of powerful quantitative
structure−activity relationships (QSAR) and other computer-
ized techniques to get the most out of the data.36−44All of
these advances together suggest that the field is ready to
explore the potential of a fully integrated drug-design-like de novo
approach to design of catalysts and other molecular inorganic
compounds.
Three main obstacles may explain why de novo methods so far

have found little use in inorganic chemistry: (i) the increased
diversity of chemical bonds and flexibility with respect to elec-
tronic and molecular structures; (ii) the need for more sophis-
ticated calculations to obtain molecular properties (fitness) and
the thus associated (increased) computational resources; and (iii)
the lack of open source software among the most powerful existing
de novo programs.
To overcome the first obstacle the rules governing how atoms

and fragments combine should be extended to include more
elements in the periodic table as well as ways to narrow the search
space to chemically interesting regions. Introducing such
extensions in existing de novo programs and methods would
indeed be possible but is de facto hampered by the third obstacle,
that is, the lack of software available for modification. Similarly,
even if obstacles i and iii could be overcome, selection of fit over
unfit structures would be hampered by the lack of molecular
descriptors suitable for transition metal compounds and effective
ways to explore the chemical structure space. The above-
mentioned electronic and geometric diversity of transition metal
compounds indicates that ranking and selection often will have to
be based on electronic methods, that is, methods such as density
functional theory (DFT), ab initio, and semiempirical theory
which take into account the electronic degrees of freedom. Such
methods are, for example, necessary for describing intermediates
and transition states of reactions involving bond rupture and for-
mation and may have to be applied when accurate fitness
functions are needed in optimizations of catalysts. Alternatively, it
may sometimes be possible to resort to computationally less
demanding force-fields-based methods such as ligand-field
molecular mechanics (LFMM45) and reactive force fields (e.g.,
ReaxFF46). The downside, however, is that such methods must be
thoroughly parametrized to handle the chemistry in question prior
to application; that is, they must be trained to mimic the behavior
of more accurate electronic methods. At any rate, the methods that
can be expected to be useful in de novo design of transition metal

compounds are both more advanced and more computationally
demanding than those frequently used in drug design.
However, except for potential applications to metalloproteins,
the systems to be treated are much smaller, and many of the
fitness functions may still be easier to address than protein−
ligand interaction energies.
Recent advances in both computational methods and hard-

ware suggest that the time is ripe for applying evolutionary de
novo methods to transition metal chemistry. Here we present
such a method, which constrains the structural search space by
utilizing the user’s knowledge of the property to be optimized
and the kind of compounds that are of interest. Search space
constraints are introduced by assembling structures from three
kinds of building blocks (termed parts), each with a different
ability to undergo modification by tailor-made structural and
evolutionary operators.
The capabilities of the EA method are demonstrated by sample

optimizations of ruthenium-based catalysts for olefin metathesis47

using a computationally obtained approximate measure43 of cataly-
tic activity as fitness.

■ RESULTS

The Overall Work-Flow of the EA. Using the principles of
natural evolution, our de novo EA seeks to produce highly
functional transition metal compounds. Its application, however, is
not limited to this domain of chemistry only. Each optimization is
initiated from a seed population of starting structures. A structure is
represented as a chromosome in the form of a 2D graph. A frag-
ment growth operation (see Supporting Information) is repeatedly
used to construct the seed population. All such 2D structures are by
default saturated with hydrogen atoms and subjected to conforma-
tional search upon transformation to 3D. Next, the fitness is cal-
culated for the lowest-energy conformation identified in each case.
Once a seed population has been prepared and the associated
fitness values calculated, a four-step optimization cycle starts
(see Figure 3 and Supporting Information): (i) ranking and iden-
tification of competitive parent structures; (ii) production of new
offspring structures by structural operations (genetic crossover,
mutation, or fragment growth); (iii) conformational search of
offspring structures; and (iv) fitness calculation of offspring
structures. The latter will typically be a property or relative energy
(e.g., a rate-determining barrier48) involving the 3D structure,
obtained in calculations using a molecular-level computational
chemistry program.
As seen in Figure 3, the conformational searches and fitness

calculations are spread on individual processor cores and are
thus made to run in parallel. A tournament procedure is adopted
to identify the more fit parent structures by pairwise comparisons
of randomly picked individuals. Offspring structures generated

Figure 2. Three generations from an artificial evolutionary optimization in which a population of molecules (red dots) spread over an area in the 2D
fitness landscape is seen to leave a local maximum and move to the region surrounding the global maximum in the upper right corner.
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from genetic crossover or mutation or from fragment growth (see
Supporting Information) are subjected to conformational search
and fitness evaluation and serve to replace, gradually, the least fit
structures in the current population. The optimization cycle
continues until a predefined number of offspring structures
have been produced and the offspring, together with the
survivors of the current population, establish a new generation.
The population thereby evolves over generations until the
maximum number of generations is reached or until no fitter
offspring structure occurs within a certain number of successive
EA optimization cycles.
Structure Representation and Assembly. Transition

metal compounds are characterized by one or more central metal
atoms, to which a variable number of covalent (ionic) or dative
(neutral) groups (ligands) are bound. When one optimizes such
compounds in the context of de novo design, it will, in general, be
possible to identify a minimal part of the structure that is known to
be necessary for the intended property, such as the mediation of a
transformation and that thus is left unmodified by structural
operations (the geometry may be allowed to change) throughout
the optimization. In the current EA scheme, this central portion of
the structure is defined as the “core” part. The core is not
subjected to 2D structural modifications, may have any number
of substitution points (i.e., positions at which the structure may

be extended and modified), and may be bound to any of the
other two classes of parts (see below), as illustrated in Figure 4.

In a typical application, the metal center or centers, with or
without portions of the ligand environment, will constitute the
constant core part.
Our goal is to achieve a method that automatically can combine

covalent and dative ligands to produce transition metal and
organometallic compounds with given oxidation and coordination
numbers for the central metal atoms. To our knowledge, the
existing general automated molecular builders assemble radical
fragments via electron-pair bonds to give organic compounds
following standard valence rules. Whereas high, “non-organic”
coordination numbers may be achieved via the definition of the
core part (see above), attaching neutral donor ligands to a core
part using such builders would require modification of the builder
or the associated fragment libraries or both. Most builders would
probably attach, say, an amine fragment as an amide group (M−
NR2) not as a donor ligand (M−NR3). To solve this problem, we
suggest to introduce the “trial” part, which encompasses the por-
tion of the dative ligand that should not be modified by structural
operations (see Scheme 1), that is, the ligand skeleton. However,
unlike the core, the trial skeletons are allowed to be selected from
a list, or a library, of ligand scaffolds, meaning that competition
among various ligand classes may be included in evolution
experiments (see Supporting Information). Each trial part will
thus be subjected to modifications but in a restricted manner in
which focus is on the chemically meaningful portion of the
structural variation space. The introduction of trial parts thus
circumvents the above-mentioned problems of automated
building of structures involving donor−acceptor bonds and
also offers a handle with which to restrict the structural varia-
tion in the optimization.
The remaining portions of the overall structure, termed “free

parts”, are varied freely following a strategy similar to that of
existing fragment-based EA methods49 and may be attached to
trial parts or to the core. The individual fragments assembled to
give free parts are generated by splitting of chemical structures
from common large libraries of organic compounds (see the
Methodological and Computational Details section as well as
the Supporting Information). This ensures that the free parts are
searched from a diverse chemical structure space. The division of
molecular structures into parts that are varied according to

Figure 3. The overall work-flow of the de novo evolutionary algorithm.
On a cluster-type architecture the user allocates n nodes, each of which
contributes m processor cores to the overall job. Core number one on
the master node generates k structures, where k = nm − 1, and
transfers them simultaneously to the k slave cores to achieve parallel
processing of the conformational search and fitness evaluation.

Figure 4. Construction of transition metal compounds from core (c),
trial (t1−tp) and unconstrained, that is, free parts (attached to the
core: f1(c)−f k(c); attached to trial parts: from f1(t1)−f n(t1) to f1(tp)−
fm(tp)) (left). Example of how a 14-electron ruthenium alkylidene
olefin metathesis catalyst may be assembled from a core (c), a trial (t1),
and four free parts. The latter consist of two copies each of f1(t1) and
f2(t1), and this example thus illustrates the use of symmetry to specify
that certain free parts remain identical throughout an EA optimization
(right).
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different rules not only allows for construction and opti-
mization of compounds other than those of standard organic
chemistry but also offers powerful tools for constraining the
searchable structure space in order to facilitate the loca-
tion of more relevant and realistic molecules. An illustration
of how a population of molecules constructed from core,
trial, and free parts may evolve over generations is given in
Figure 5.
An appropriate representation of molecular structures is

needed for their generation and manipulation. Among the
many different ways in which to represent molecular structures,7

we selected, after careful comparison, a graph-based representa-
tion50 available in the Chemistry Development Kit (CDK),51 and
the molecular structures are represented as combined graphs of
core, trial, and free parts. The representation is object-oriented
and enables fragments, atoms, and bonds of structures to be
labeled and tracked throughout the optimization.
Case Study: Ruthenium Olefin Metathesis Catalysts.

As an initial test of our de novo evolutionary method, we have
chosen ruthenium alkylidene olefin metathesis catalysts.47,52

The precursors of these catalysts, L′LCl2RuCHR, are co-
ordinated by two dative ligands, L′ and L, and the activation
step consists of dissociation of one of these ligands, L′, to form
the active 14-electron complex, LCl2RuCHR. Moreover, the
initial alkylidene group, usually benzylidene, is replaced in the
first catalytic cycle, for example, by methylidene in the case of
the generic ethylene metathesis reaction. The 14-electron

LCl2RuCH2 complex is thus a reasonable model catalyst for
optimization of general catalytic activity.
Three factors make the structural subspace generated by the

dative ligand L appear tempting for test optimizations using the
EA: (i) the drastic influence wielded by this ligand on catalyst
activity and stability53−55 making it an interesting target for
further catalyst development, (ii) the considerable body of ex-
perimental and theoretical data against which such test
optimizations can be validated, and (iii) the fact that a com-
putationally inexpensive fitness function can be constructed
based on an available QSAR model.43 With respect to factors i
and ii, a good portion of the efforts at improving the perfor-
mance of the ruthenium-based catalysts are aimed at the dative
ligand,56,57 and optimization thereof has led to the development
of two main classes of catalysts, the first58,59 and second60,61

generation Grubbs catalysts, based on phosphine and N-
heterocyclic carbene (NHC, imidazol-2-ylidene (unsaturated)
or dihydroimidazol-2-ylidene (saturated) ring) ligands, respec-
tively, in addition to a considerable hierarchy of subclasses with
known relative catalytic activities in particular among the
second-generation catalysts.
Regarding the fitness (factor iii above), a clear correlation

between certain molecular descriptors derived from DFT cal-
culations (e.g., bond distances, angles, and partial charges) of
the active 14-electron complexes LCl2RuCH2 and a theore-
tical, approximate measure of the catalytic olefin metathesis
activity, termed “productivity”, also obtained using DFT, has
been demonstrated.43 Even if the fitness could, for the purpose

Scheme 1. An Overview of the Different Structural Operations Applied to the Trial and Free Parts: Growth (Random and
Symmetric), Crossover, and Mutation (Side Chain and Scaffold)a

aSubstitution points are indicated by Rn (enumeration by n) and dashed lines of attachment to the rest of the structure. Trial parts are indicated and
enumerated as tn.
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of limited EA test optimizations, be based on DFT calculations,
larger and more routine applications of the EA will require a
computationally less expensive fitness. Thus, to ensure realistic
testing, we constructed a QSAR model based on partial least-
squares regression (PLSR)62,63 for the DFT-based productivity
of ref 43 using six readily interpretable molecular descriptors
pertaining to the core part, obtained in PM664 geometry opti-
mizations; see the Methodological and Computational Details
section for more information. It is important to realize that this
QSAR model is based on comparable descriptors from the part
(core) shared by all the generated structures, eliminating the
need for alignment of the molecular structures. An alignment
step, such as used in the comparative molecular field analysis
(CoMFA),65 would make the optimization less efficient.
However, there are alignment-free 3D QSAR methods that
might be suitable for this purpose, such as grid-independent
descriptors (GRIND),66,67 VolSurf,68 and those based on
inductive logic programming.69−71

As explained above, the possibility to handle metal centers
bearing dative ligands in de novo design is an important part of
the motivation behind the development of the current method.
This is reflected in the following test optimizations, which in-
volve different competing ligand skeletons (trial parts) in
combination with a constant, core part, Cl2RuCH2. In order
to ensure equal chances to all ligands tested, the starting popu-
lations contained (nearly) equal numbers of the different trial
parts. All ligand substituents have been subjected, in one or
more evolution experiments, to variation of free parts using the
2238-entry fragment library described in the Methodological
and Computational Details section. This section also contains
the detailed settings and options of the EA experiments.
All the EA experiments have been reproduced, with very
similar developments of the populations and the productiv-
ities, and some of these additional experiments are given in
the Supporting Information.

In the first evolution experiment, two types of trial parts were
employed, namely, a general three-coordinate phosphorus
scaffold (termed PR3) and a general, unsaturated imidazol-2-
ylidene scaffold (I−R2) with available substitution points on the
CC backbone, see Figure 6. The two trial parts correspond
to the first- and second-generation Grubbs catalysts, respec-
tively, with the second-generation compounds known to display
higher catalytic activities in general. Hence, if our fitness func-
tion reflects the observed activity of the catalyst, the second
generation structures should tend to out-compete the first
generation. This is confirmed in Figure 6, which shows the oc-
currence of the trial skeletons in the different generations. The
rate of disappearance of the first-generation Grubbs catalysts
(up to five per generation) is fast but would have been even faster if
evolution were not operating also among the phosphorus ligands. It
should be noted that even though the number of phosphorus
ligands drops to zero in the eighth generation, new ligands of
this kind are still being generated by fragment growth and could
rebound if they would be fit to compete with the carbenes. This
is not the case, however, and the number remains at zero until
the end of the evolution run. The average predicted prod-
uctivity is seen to grow smoothly and steadily throughout the
optimization, driven by increases in both the maximal and
minimal fitness values in the population, see Figure 6b. Parti-
cularly unfit complexes are eliminated early on in the opti-
mization.
In the second evolution run, four trial parts compete against

each other, namely, para-substituted aryl (termed PAr3) and
alkyl (P(CH2R)3) phosphine together with an imidazol-2-
ylidene skeleton with hydrogen atoms (I) and chlorine atoms
(I−Cl2) on the NHC backbone; see Figure 7. Again, the less fit
first-generation ligands (P(CH2R)3 + PAr3) decline right from
the start, leading to extinction of PAr3 already in the fourth
generation, followed by P(CH2R)3 in the seventh generation.
From the moment that all phosphines have disappeared, the

Figure 5. Schematic illustration of artificial evolution of molecules constructed from core, trial, and free parts.
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chlorine-substituted NHCs begin to decline in numbers. The
decline is rather slow and irregular, and this trial structure partly
resists extinction, with one or two individuals still left in the
population throughout almost 20 generations before the
maximum number of generations is reached. The maximal fitness
values of the initial generation may suggest probabilities for long-
term survival or extinction and thus give hints, for example, as to
the mechanism behind the slow decline of the chlorine-substituted
carbenes I−Cl2. The difference between the two kinds of carbene
trial skeletons is only slightly in favor of I (0.47 kcal/mol predicted

by the PM6-based QSAR model, which compares well with the
0.6 kcal/mol obtained from explicit DFT calculations43). The
small difference in fitness is reflected in instances during evolution
in which the intrinsically lesser fit I−Cl2 is actually increasing in
numbers at the expense of I.
The fact that the hydrogen-substituted imidazol-2-ylidene

skeleton prevails is probably due to increased electron donation
compared with the chlorine-substituted counterpart. Electron-
donating substituents in the backbone positions are known to
increase catalytic activity.43 The drop in calculated productivity
upon replacing backbone hydrogen by chlorine is thus consistent
with a somewhat lower observed catalytic performance.56

As a further test of the quality of the structures with high
predicted productivities in the last generations of the EA
experiments, three such structures were subjected to explicit
calculation of the productivity at the DFT level of theory, see
the Supporting Information for computational details. With a
fitness function defined to target a single property, a fair frac-
tion of the structures generated by the method will necessarily
be very difficult or impossible to synthesize. In the present case,
the three complexes selected for explicit fitness calculation, I1,
I2, and I3, were chosen among the high-productivity, final-
generation structures due to their size (avoiding the largest)
and their assumed ease of synthesis compared with the other
final-generation complexes, see Figure 8. Gratifyingly, the ex-

plicitly DFT-calculated productivities of the three complexes
compare favorably with those of existing commercial catalysts.43

The DFT-calculated productivities of catalysts based on I1 and
I2 are higher, for example, than that of the commonly used

Figure 7. The second EA experiment, involving four trial parts, an
imidazol-2-ylidene scaffold with two substitution points and two
hydrogen atoms (termed I) or two chlorine atoms (I−Cl2), as well as a
triphenyl phosphine skeleton with substitution points at the phenyl
para positions (PAr3) and a trialkyl phosphine skeleton with three
substitution points (P(CH2R)3). Substitution points are indicated by
Rn (enumeration by n) and dashed lines of attachment to the rest of
the structure.

Figure 6. (a) The first EA test optimization, involving competition
between two trial parts, an imidazol-2-ylidene scaffold with four
substitution points (termed I−R2) and a phosphorus atom with three
substitution points (PR3). Substitution points are indicated by Rn

(enumeration by n) and dashed lines of attachment to the rest of the
structure. (b) Average, minimal and maximal predicted productivities
(i.e., fitness) throughout the first evolution experiment.

Figure 8. Explicitly DFT-calculated productivities43 of NHC ligands
I1, I2, and I3 selected from the last generations of the EA experiments
compared with those of known ligands L of catalysts L′LCl2RuCHR.
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mesityl-substituted unsaturated imidazol-2-ylidene (termed
IMes). Particularly high productivities were calculated43 for
catalysts based on ligands with electron-donating substituents
on the two carbon atoms of the N-heterocyclic carbene (NHC)
backbone, and this prediction has subsequently been confirmed in
a series of experimental studies, for example, see refs 72−74. It is
thus remarkable that the productivity obtained for I3 is, in fact,
higher than that calculated for the best previous predictions,43

including those of saturated NHCs such as SIMes.
Unfortunately, I3, albeit C2-symmetric, contains structural

features that would make the synthesis challenging, expensive,
and time-consuming, if possible at all. The structure of the aryl
substituent on the nitrogen atom is unusual and complex, and
the CC backbone is substituted with a sterically demanding
1-hydroxy-cyclohexyl group. Thus, it is tempting to try to reduce
the chemical complexity of this ligand at the same time as
preserving the predicted catalytic activity. To this end, we have
progressively simplified its molecular structure and calculated the
productivity of each simplified ligand explicitly (using DFT, see the
Supporting Information for details); see Figure 9. It is immediately

evident that the chemical complexity of the aryl substituent is not
essential for catalytic activity. For example, the calculated pro-
ductivity of I3_a and I3_b, which both contain a monosubstituted
N-aryl substituent, is at the same level as, or even slightly better
than, that of I3. In contrast, attempts to simplify the molecular
structure of the 1-hydroxy-cyclohexyl substituent of the CC
backbone leads to lower productivity.
The protection of the free hydroxyl function as acetate is

beneficial for the calculated productivity. The higher pro-
ductivity of I3_e compared with I3_b is most probably due to
steric rather electronic effects. The larger acetoxy group
increases the steric requirements of I3_e, which is expected
to boost catalytic activity,43 whereas its electron-withdrawing
properties are expected to hamper the overall ligand-to-metal
donation and thereby also the catalytic activity.43 The explicitly
calculated productivities of the ruthenium alkylidene com-
pounds containing the ligands I3_a, I3_b, or I3_e imply that
these complexes should possess exceptional catalytic activ-
ities.43 Thus, if these ligands and their ruthenium alkylidene

complexes can be prepared and are sufficiently stable, they
could form a new generation of Grubbs-type catalysts.
The DFT-optimized geometries of the ruthenium complexes

reveal that the structural parameters of the ruthenium center
are similar to those of existing ruthenium-based catalysts.
However, in contrast to other imidazol-2-ylidene ligands, the
region around the CC backbone in I3_a, I3_b, and I3_e is
not planar and forms torsional angles N−CC−N in the
range 6−8°. These results suggest that, whereas the preparation
of the ligands is probably not trivial, the subsequent synthesis of
the ruthenium complexes should be straightforward. A
retrosynthetic analysis of the ligands I3_a, I3_b, and I3_e or,
better, of the imidazolium salt precursors suggests that the last
step (the ring closing reaction) is the only truly challenging
step. The synthesis of the acyclic precursor appears to be
relatively unproblematic. The only starting material that is not
commercially available is the fragment containing the sub-
stituted CC backbone, but this can be prepared in a few steps
starting from acetylene, cyclohexanone, and KOH, for example,
see ref 75. Glorius and co-workers have recently discovered an
efficient strategy for preparation of highly substituted im-
idazolium salts, which has been successfully applied in the
synthesis of several 4,5-dialkyl-substituted unsaturated imida-
zolium salts.76 One of the latter compounds involves a com-
bination of substituents with an overall steric demand com-
parable to our target molecules. This compound has
disubstituted alkyl substituents on the CC backbone and a
mesityl group on the nitrogen atoms, while our target com-
pounds have trisubstituted groups on the CC backbone and
less sterically demanding substituents on the nitrogen atoms
(2-tolyl or 2-chlorophenyl). Thus, it is conceivable that one or
more of I3_a, I3_b, and I3_e can be prepared using the
methodology disclosed by Glorius and co-workers76 or a
slightly modified version thereof.

■ DISCUSSION
The Case Study. It should be kept in mind that the above-

predicted structures I1, I2, and I3 have been generated
automatically in an optimization of a single property (catalytic
activity) only, with factors such as stability neglected. This case
study thus illustrates a general problem of the present and
similar EA methods: there is no guarantee that the predicted
compounds are stable and may be obtained. Often one must
therefore resort to extracting the essential pieces of information
inherent in the high-fitness structures of the last generations.
For example, as we have seen above (Figure 9 and accom-
panying text) the useful message from I3 is not its exact
molecular structure but rather the oxy-cyclohexyl-substituents
on the CC backbone (conserved in I3_a, I3_b, and I3_e),
whereas the unusual and complex substituents on the N-bound
groups could be discarded without loss of predicted catalytic
activity. To our knowledge, no ruthenium-based catalysts for
olefin metathesis involving NHC ligands with such cyclic
substituents have been reported to date.

General Considerations. The particular challenges of
transition metal and organometallic chemistry have in the
present EA method been met by possibilities for restricting the
search space around sets of combinations of metal centers and
ligand skeletons and, in the present test optimizations, by careful
preparation of a computationally inexpensive, yet apparently suf-
ficiently accurate, fitness measure. The initial tests of the method
indicate that it works as intended and reproduces known trends in
activity among the class of compounds chosen for validation, the

Figure 9. Explicitly DFT-calculated productivities43 of catalysts
L′LCl2RuCH2 for which L = I3 and structural variations of I3
(R = (E)-2-butenyl; Ac = acetyl).
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ruthenium-based olefin metathesis catalysts. The method is likely
to be broadly applicable in molecular inorganic chemistry. The
degree to which it is useful, however, is to a large extent deter-
mined by the quality and computational cost of the fitness.
Application of the method should thus in general be preceded by
careful selection and preparation of a suitable fitness function,
which also implies that as much mechanistic information as
possible should be available. A relatively simple fitness function,
describing the stability of a reaction intermediate with respect to
the resting state, was used in the above case study. With sufficient
knowledge of the reaction mechanism, the fitness function may
take into account competition between different pathways and
barrier heights. For example, if a given catalytic reaction involves
two potentially rate-determining barriers and the goal is to
optimize a more active catalyst, both barriers should be monitored
throughout the EA optimization, with the fitness function always
taken to be the highest of the two. With all the relevant mechanistic
aspects known, the power of the method is, in principle, only
limited by the available computing capacity. For example, realistic
drug-design-style EA optimizations may require millions of
individual fitness evaluations to complete, meaning such evaluations
on average must finish within minutes, not hours, on a single pro-
cessor core for the overall optimization to be tractable. In many
cases, it will probably be necessary to prepare an indirect fitness
measure such as in the present test runs, which rely on a QSAR
model to offer an approximate measure of catalytic activity. Similarly,
if sufficient attention is paid to parametrization, it is likely that
efficient fitness functions may be obtained from the application of
computationally inexpensive methods such as ligand-field molecular
mechanics (LFMM,45 which has already been used successfully
in design77) and reactive force-fields (e.g., ReaxFF46) and steps to
integrate such fitness providers will be taken. Introduction of stru-
ctural operators that take synthetic accessibility78 into consideration,
removal of undesirable structures prior to fitness calculation,79 and
dynamical updating of QSAR models by on-the-fly calculation of
true fitness during EA optimizations constitute other desirable targets
for future work.

■ CONCLUSIONS
We have described a new fragment-based evolutionary algorithm
(EA) for de novo optimization. The method is applicable to
molecular systems in general but has been specifically developed
to handle the particular challenges posed by organometallic and
transition metal compounds.
With the exception of special and well-parametrized cases,

the calculation of fitness can be expected to require quantum
chemical methods. In the initial phase of the development, we
have chosen the semiempirical method PM6,64 as implemented
in the MOPAC program,80 as the basis for calculating the fitness.
The possibility to address large EA optimization problems is
enabled by simultaneously allocating the individual fitness
evaluations to different processor cores.
In a series of EA experiments involving optimizations of

ruthenium alkylidene complexes for olefin metathesis, we have
demonstrated the capabilities of the EA method. The approach
was not only able to retrace the transition of Grubbs catalysts
from the so-called first-generation (phosphine-coordinated
active compounds) to the second-generation (NHC-coordi-
nated active compounds) catalysts, but also to discriminate well
between less and more active catalysts within the same ligand
classes. In addition, a small set of compounds were selected
among the high-fitness, last-generation structures, and DFT
calculations indicate that these compounds may indeed lead to

new and highly active olefin metathesis catalysts. These predictions
thus indicate that the EA method, even in combination with a
computationally inexpensive fitness, has significant potential for in
silico development of catalysts and other functional transition
metal compounds.

■ METHODOLOGICAL AND COMPUTATIONAL
DETAILS

The Library of Free Fragments. In order to obtain an
initial version of a library of fragments to build free parts, a set of
10005 molecules from the KEGG LIGAND database provided by
Ligand.Info81 was used. The LIGAND database contains mostly
organic compounds and has been reported to offer hit rates in
high-throughput screenings of natural products superior to those
of several other common libraries.82,83 While organometallic
compounds distinguish themselves from organic-only compounds
in that they contain metal centers, they are bound to organic parts
(ligands), which may be built from organic fragment libraries.
We have developed two programs to automatically build a

library of fragments to form free parts: a splitting tool and a scre-
ening tool. The splitting tool cuts a hydrogen-depleted structure
into fragments at rotatable and nonterminal bonds (i.e., single
bonds that are not part of a ring and do not include atoms
connected to only one other atom) and stores the generated frag-
ments along with their substitution point information using the
structure-data file format (SDF) of MDL. Next, the screening tool
filters all the stored fragments according to user-defined rules. Any
duplicates or undesirable fragments are discarded. We thus applied
the KEGG data set as a source when constructing the free parts,
with the following constraints: First, molecules that contain
elements other than C, N, O, S, P, F, Cl, Br, I, B, As, Si, or Sn were
not processed by the splitting tool. Similarly, molecules containing
non-naturally occurring isotopes were also discarded, leaving 8868
for further processing. Fragments containing more than 14 non-
hydrogen atoms or more than three rings were not entered into
the library, nor those with an overall charge. We finally obtained a
fragment library consisting of 2238 unique entries, including 1155
side chains with a single substitution. Of the 1083 scaffolds, 755
contain two substitution points, 251 have three, 66 have four, 10
have five, and 1 such scaffold has six substitution points.

The Fitness Pressure. The fitness function used in the
present EA experiments is a QSAR model that predicts catalytic
“productivity” as defined in ref 43. The productivity represents
the stability of the metallacyclobutane intermediate relative to a
series of 16-electron precursor-like, inactivated complexes and
correlates very well (R2 > 0.98) with DFT-calculated barrier
heights,84 as well as with the observed catalytic activity of the
catalysts.43

The QSAR model (Q2 = 0.85, RMSECV = 1.48 kcal/mol)
correlates the productivity of 27 catalysts with molecular
descriptors obtained in geometry optimizations using the
semiempirical method PM664 as implemented in the MOPAC
program.80 With more than half (19) of these catalysts
containing NHC ligands, and three bearing phosphorus-based
ligands, the QSAR model is trained mainly at describing these
common classes of ligands and should be used with care in
case of more “exotic ligands”. The descriptors were the average
Ru−Cl bond distance, the Cl−Ru−Cl bond angle, the average
Cl−RuC bond angle, the absolute value of X−RuC−Hsyn
torsion angle (Hsyn is the hydrogen atom in syn position with
respect to the X atom), the average partial charge on Cl, and
the average partial charge on H. Here, Ru, C, Cl, and H are
atoms of the core part, and X is the donor atom of the trial part
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formally bound to Ru. Higher predicted productivity value for the
generated structure means a higher fitness. The PLSR coeffi-
cients of the linear combination are presented in the Supporting
Information.
As noted above, when we use regression models to define a

simplified fitness measure, it is important to ensure that the EA
optimization stays within the applicability domain (AD) of the
model. In the present method, this is achieved mainly by con-
straining the search space by requiring that parts of the overall
structure are kept fixed (the core parts) or are to be found
among a finite set of (ligand) scaffolds (the trial parts). In addi-
tion, the present structural search space has also been limited
by introducing a few upper bounds to selected key values, such
as the maximum number of non-hydrogen atoms (60), and
other structural requirements (see Table S1 in the Supporting
Information).
Parameters of the EA Test Runs. The parameters

pertaining to the structural operations, fitness applicability
domain, and other relevant EA options are listed in Table S1
in the Supporting Information.
Two important settings, the maximum number of gen-

erations and the individual size of the population, are both set
reasonably high (to 50) so as to ensure sufficient resolution and
sampling. A relatively low number of offspring structures (five)
generated per generation is commensurate with a moderate
evolution pressure and smoothly evolving generations.
An optimization is terminated when no candidate is found

fitter than the least well adapted structure in the current
population within 100 successive searches (exhaustion size).
Moreover, the maximum number of conformers visited in the
conformational searches using the calculator (cxcalc) of the
Marvin package85 was set reasonably high (250). Tests showed
that allowing more conformers to be included did not lead to
significant improvement in the resulting 3D geometries.

■ ASSOCIATED CONTENT

*S Supporting Information
Details of the de novo evolutionary algorithm, complete
computational details of the case study, results from additional
evolution experiments, and details of the explicitly DFT-
calculated productivity of catalysts based on predicted ligands
I1, I2, and I3, as well as of the structural variation of I3 (I3_a,
I3_b, I3_c, I3_d, and I3_e).This material is available free of
charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Authors
vidar.jensen@kj.uib.no; bjorn.alsberg@chem.ntnu.no

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Y.C. gratefully acknowledges the Department of Chemistry of
the Norwegian University of Science and Technology (NTNU)
for funding of her Ph.D. research. The Norwegian Research
Council (NFR) is acknowledged for financial support from the
eVITA (Grant No. 205273), GASSMAKS (Grant No. 182536),
and KOSKII (Grant No. 177322) programmes, as well as for
CPU resources granted through the NOTUR supercomputing
programme. The University of Bergen is acknowledged for
financial support through the Nanoscience programme and

ChemAxon (http://www.chemaxon.com) for free academic use
of the Marvin package.

■ REFERENCES
(1) Manly, C. J.; Louise-May, S.; Hammer, J. D. Drug Discovery Today
2001, 6, 1101−1110.
(2) Xu, H.; Agrafiotis, D. K. Curr. Top. Med. Chem. 2002, 2, 1305−
1320.
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